Assessment of Peri-Articular Implant Fitting Based on Statistical Finite Element Modeling
Please use this identifier to cite or link to this publication: http://hdl.handle.net/10380/1366
New: Prefer using the following doi: https://doi.org/10.54294/txt4uu
We present a framework for statistical finite element analysis allowing performing statistical statements of biomechanical performance of peri-articular implants across a given population. In this paper, we focus on the design of orthopaedic implants that fit a maximum percentage of the target population, both in terms of geometry and biomechanical stability. CT scans of the bone under consideration are registered non-rigidly to obtain correspondences in position between them. A statistical model of shape is computed by means of principal component analysis. A method to automatically propagate standardize fractures on the statistically-based bone population has been developed as well as tools to optimize implant position to best-fit the bone surface. Afterwards, finite element analysis is performed to analyse the biomechanical performance of the bone/implant construct. The mechanical behaviour of different PCA bone instances is compared for tibia representing the Asian and Caucasian populations.